Development of a Hydrologic Climate-Response Network for Resource Assessments

Robert Lent, Glenn Hodgkins, Robert Dudley USGS Maine Water Science Center

Purpose

- Demonstrate usefulness of existing hydrologic networks for monitoring and assessing climate change
- It can be difficult to directly assess the impact of climate change on resources
- Instead use a two step process
 - Effect of climate change on hydrologic processes
 - Effect of changes in hydrologic processes on resources

Climate Research in the USGS Maine Water Science Center

- Since 2001 the USGS MeWSC has evaluated the impact of climate change on long-term hydrologic records in New England
- Primary work demonstrated strong relationships between climate and some hydrologic variables
- Hydrologic variables displayed consistent temporal and geographic trends

Why Study Climate Change in Maine? Hydrology is Sensitive to Climate

- Spring runoff dominates the annual hydrograph
- Occurring significantly earlier in northern New England in recent years
- Timing related to air temperatures

Why Study Climate Change in Maine? Abundant Hydroclimatic Data

- Abundance of historic hydrologic stations
 - Long-term records
 - Not impacted by flow regulation
 - Little urbanization
- Large climate gradient
 - Mountains to the Atlantic Coast
 - Part of a larger regional gradient

Hodgkins and others, 2003

Traditional Hydrologic Networks

- Not designed for monitoring climate change
- Stations were located for flood control, regulation, water use, and local uses
- Traditional variables were not necessarily sensitive to climate change
- Reporting based on the assumption of stationarity

Climate Response Program Goals

- Define impact of climate variation on hydrologic processes
- Provide an early warning of hydrologic response to climate change
- Provide systematic information to resource managers

Impact of Climate on Hydrologic Processes

Temporal Variation

Damariscotta Lake ice-out dates

Impact of Climate on Hydrologic Processes Regional Variation

- Maine
 - Timing
 - Mountains to the Coast
- New England
 - Significance
 - North to south
- Regional gradients
 - Direction

Hodgkins and others, 2003

Impact of Climate on Hydrologic Processes Regional Variation

- Different areas of New England may have different key variables —even adjacent areas
- Different variables may be appropriate for different scales

Types of Hydrologic change Variations in Quantity

Types of Hydrologic change Other Variations

- Frequency of events
 - Number of rain events
 - Occurrence of extreme events
- Changes to the hydrologic system
 - Changes in snow versus rain
 - Changes in river ice formation

Implement Early Warning Monitoring Network Choosing Key Hydrologic Variables

- Response to climate change
- Important to resource managers
 - Ecosystem function
 - Water availability and use

Implement Early Warning Monitoring Network Key Hydrologic Variables

Streamflow

- Timing of winter-spring runoff
- Magnitude of annual peak flow
- Magnitude of summer baseflows

Groundwater

- Amount of seasonal recharge
- Timing of seasonal peaks

River ice

- Days of ice-affected flow
- Ice thickness

Lake ice

- Date of spring ice-out
- Late-winter snowpack
 - Depth
 - Density
 - Water equivalent

Implement Early Warning Monitoring Network Define Hydrologic Response Regions

- Spatial variability of hydrologic variables
- Regional boundaries
 - Major watersheds
 - USEPA Ecoregions
 - Biophysical regions
- Important resources
 - Critical habitat
 - Native American lands
 - Federal lands
 - Drinking-water supplies

Native American headquarters

Implement Early Warning Monitoring Network Define Hydrologic Response Regions

 Historical changes in timing of winter/spring runoff, 1953-2002

Implement Early Warning Monitoring Network Define Hydrologic Response Regions

 Historical changes in timing of lake ice-out dates, 1834-2008

Operate Early Warning Monitoring Network Update Variables

01014000 St. John River below Fish R., at Fort Kent, Maine

Winter-spring center volume dates through 2010 for each of six Maine climate response

Operate Early Warning Monitoring Network Update Trends

Lake Ice Out Dates

Completed in 2000

Completed in 2009

Early Warning Monitoring Network Ongoing Activities

- Gap analysis
 - Identify missing data collection sites
- Identify shorter-term monitoring sites
 - Shorter records (20 to 50 years)
 - Minimal impact
- Evaluate new indicators
- Archiving
 - Develop strategy for maintaining record between trend analysis
 - Construct data base

Early Warning Monitoring Network Future Activities

- Additional information analyses
 - Long-term inter-annual variability
 - Weather versus climate
 - Attribution (natural versus anthropogenic CC)
- Regional applications
 - Evaluate variables at different scales
 - Expand to New England or the Northeast
 - Incorporation information into USGS National Climate Effects Network

Provide information to resource managers

- Identify watersheds in each region
 - Representative
 - Important to resource managers
- Watershed models
 - Calibrated for key HCRN variables
- Additional data collection
 - Continuous water temperature

Climate Response Network and Watershed Models

- Hydrologic Climate Response Network provides:
 - Key hydrologic variables sensitive to climate changes
 - Temporal and geographic context
 - Appropriate variable for different scales
- Calibrated watershed models provide:
 - Means to link climate and hydrology to ecological models
 - Ability to make projections about future conditions
 - Temporally and spatially explicit water budgets

Effect of Climate Change and Variability on Design Flood Flows in Maine

HCRN key variable: Annual peak flow

- Resources impacted: Bridges and culverts
- Resource agencies: Maine DOT

Effect of Future Climate Change and Variability on Design Flood Flows in Maine

HCRN key variable: Annual peak flow

- Resources impacted: Bridges and culverts
- Resource agencies: Maine DOT, Acadia National Park

Effects of Climate Change on Low Flows and Water Temperatures

HCRN key variable: Summer baseflows

- Resources impacted:
 A. Salmon survival during summer low flow conditions
- Resource Agencies: NOAA-NMFS/USFWS/MDMR

Timing of Snowmelt Runoff in Downeast Rivers

HCRN key variable: Winter/spring runoff

- Resources impacted:
 Timing and success of Atlantic salmon smolt migration
- Resource Agencies: NOAA-NMFS/USFWS/MDMR

Snowpack and Forest Carnivores

 HCRN key variable: Snowpack density and depth

- Resources impacted:
 Canada lynx and snowshoe hare
- Resource agency:
 U.S. Fish and Wildlife

Community Metabolism in Freshwater Streams

HCRN key variable: Summer baseflows

- Primary productivity
 and community
 respiration in the
 Meduxnekeag River
- Resource agencies: Houlton Band of Maliseet Indians, BIA

Effects of Climate Change and Eutrophication on Hypolimnetic Oxygen Demand in Lakes

HCRN key variable: Lake ice-out date

- Resource impacted: Hypolimnetic Biota
- Resource agency: Acadia National Park

- Contact information rmlent@usgs.gov207-622-8201 ext. 102
- Full report: http://pubs.usgs.gov/of/ 2009/1115/
- Fact Sheet: http://pubs.usgs.gov/fs/ 2009/3044/
- All reports and info: http://me.water.usgs.gov/

Framework for a U.S. Geological Survey Hydrologic Climate-Response Program in Maine

Open-File Report 2009-1115

U.S. Department of the Interior U.S. Geological Survey

Hodgkins, Lent, Dudley, and Schalk, 2009

01014000 St. John River below Fish River, at Fort Kent, Maine

01014000 St. John River below Fish R., at Fort Kent, Maine

Winter-spring center-volume dates

Winter-spring center volume dates for each climate response unit

